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The problem of the displacements of a deformable body under the action 

of unsteady acoustic waves of arbitrary form is solved herein. 

Some general conclusions are drawn regarding the effect of the pro- 

perties of the medium and of the deformations of the body on its final 

displacement (at t =: a). 

In particular, it is shown that the final displacements of a body 

immersed in a viscous fluid do not depend on its buoyancy. 

Novozhilov t1.1 investigated the problem of the displacements of a 

body of arbitrary shape immersed in a fluid and subjected to acoustic 

pressure waves. 

That problem was solved under the following assumptions: an abso- 

lutely rigid body, an ideal fluid, and a plane Pressure wave. 

The effects on the displacement of the body of its deformability and 

the (time-independent) properties of the acoustic medium (for example, 

the viscosity of the fluid) are clarified below. In general, there are 

no assumptions as to the form of the wave. 

The linearity of the problem allows the equations of motion Of the 

body to be written in terms of components along its Principal central 

axes of inertia in the following manner: 

Mii ii*c f Qi = Pi (i = 2, . o ., 6) (1) 

Here Mii is the mass (moment of inertia) of the body, ;iii is the 
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acceleration of the center of mass of the body (the ratio of the moment 

of the inertia force to the moment of inertia is the angular accelera- 

tion of the deformable body), Pi is the force (moment) exerted on an 
absolutely rigid immovable body by the waves propagating in the medium. 

and Qi is the additional force (moment) of interaction of the body with 

the medium caused by the displacement of the body (more precisely, by 

the displacement and deformation of the surface of the body); dots de- 

note differentiation with respect to time t. 

The force (moment) Qi is determined by the integral over the surface 

s of the body of the scalar product of the pressure q causing displace- 

ment of the body with the unit vector vi directed along the correspond- 

ing axis (the vector function of the displacement of a point on the 

surface of the undeformed body for a unit rotation about the correspond- 

ing axis) 

(2) 

where x and y are the coordinates on the surface and t is the time. 

The dependence of the generalized force Qi on the displacement of 

the surface may be expressed in an explicit form. In order to do this 

it is convenient to represent the displacement of the surface in the 

following form: 

w b, Y, t, = x uk (t) vk b, y) 
k 

(k = 1, 2, . . .) (3) 

Here {vk(x, y)) is a suff’ iciently complete set of vector functions 
such that for k = 1, . . . . 6 these functions coincide with the functions 

vi determined above; that is, they correspond to the displacements of 
the surface as a whole, while the remainder (k = 7. 6, . ..) represent 

the deformation of the surface; uk(t) iS a generalized coordinate. In 

the absence of deformation ak = ask for k = 1. 2, . . . , 6, uk = 0 for 

k = 7, 8, . . . . 

Let the surface of the body displace or deform such that the general- 

ized coordinate ak increases with unit speed 

Uk = 1 for t>O, Uk = 0 for t<O 

um s 0 for m# k. 

In general, this process gives rise to a pressure on the surface of 

the body with components along each of the directions vi. Relation (2) 

defines the generalized force Fik(t) corresponding to these conditions. 
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Owing to the linearity of the problem, the generalized force Qi(t) 

arising in an arbitrary displacement of the surface is determined by 
an equality which is an immediate consequence of the superposition 

principle 

Qi (t) = 2 Qik (t) = x \ F, fit - 
k "6 

Here and henceforth it is assumec that ak 

z) ii, (z) dz (4) 

= 0 for t < 0, while ii& 
generally speaking, includes impulsive functions (in particular, if 

lim uk f 0 as t - + 0). 

The dependence of the generalized force Pi on the parameters of the 

wave may also be exhibited with the help of the functions Fik. 

An examination of the portion of the medium bounded (conceptually) 
by the surface of the body enables the determination of this dependence. 

The dynamic equilibrium of the “fictitious body” obtained In this 

manner may be described by equations similar to equations (1). 

If the body under consideration is replaced by the fictitious body 

and its equations of motion are referred to the axes chosen above, then 

the components of the external forces on the undisplaced surface and 
the functions Fik for the fictitious body will be the same as those for 
the actual body. l and these equations have the form 

Here Mnio iS 

fictitious body 
associated with 

n ko” 
the mass, stat ical moment, or moment of inertia of the 
about said axes. The superscript ’ denotes quantities 

the fictitious body. 

The moment of the inertia force Is written here as the sum of the 

moments due to the generalized displacements u.h’, for both n = i and 

n # i, because the axes relative to which the equations of motion of 
the fictitious body are written are in general not Its principal central 

axes of inertia. 

The fictitious body does not cause any disturbances In the wave Pro- 

pagation through the medium. Hence the necessary data regarding its 

l It is assumed that the body does not ‘separate” from the medium. If 
the body is in a solid elastic medium or a real fluid, the displace- 
ments of the medium on the surface of the body are identical to the 
displacements of the body. In the case of an ideal fluid this condi- 
tion applies to the normal displacements. 
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displacements (uko, uai ‘) may be obtained by an appropriate integration 
of the projected displacements of the medium over the surface and volume 
of the body. 

Thus equations (5) may be considered as equalities determining the 
force Pi. 

On the basis of relations (4) and (5) the equations of motion of the 
body (1) may be written in the following form: 

t 

Mii ii,& x Fi, (t - t) ii, (z) dz = 2 M,; li,; 
s 

+ xi F, (t - z) ii,” (z) dz (6) 

k0 7% k0 

An analysis of equations (6) makes possible certain general con- 
clusions regarding the final displacements of the body. 

The Laplace transform reduces equations (6) to the form 

Mii PaU*i+ + 2 Fik+ pa Uk’ = 2 M,,i $U*i+ + 2 Fik+$Uk’+ (7) 

where the meanings 
by the relation 

k n k 

of the superscript ’ and the parameter p are defined 

m 

s ‘.P (t) ewpt dt = W (p) 

0 

In order to determine the magnitudes of the final 
the body from equations (7), it is sufficient to use 

/E @ (t) = @CO = lim pm+ (p) 
P-+0 

which is valid provided the limit (which need not be 
left-hand side exists and satisfies the condition 

lim 0 (t) e-Pt = 0 for p > 0 
t-+cxJ 

displacements of 
formula [21 

63) 

bounded) on the 

If it Is assumed that the wave due to the external disturbance is 
bounded in time or is damped, while the medium is unbounded, one may 
assert that the displacements of the body will satisfy the above condi- 
tions. 

Actually, the disturbance waves emitted due to the vibrations of a 
body in an unbounded medium cause these vibrations to be damped. Hence, 
if vibrations of the body occur, then they should damp out when the ex- 
ternal disturbance stops, and consequently the displacements of the body 
will approach a limit. Moreover, the boundedness of the external influ- 
ences precludes the exponential growth of the displacements of the body 
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as t - m. 

The character of the relation between the final displacements of the 
body and the final displacement of 
q ents of the medium in the absence 
(7) and (8). depends to a considerable 

‘ik+(P) as p 4 O(Fik( t) as t _ co). 

the fictitious body (or the displace- 
of a body), as follows from relations 
extent on the behavior of the function 

In the case of a body of finite dimensions, the functions Fik may be 
classified as follows, depending 
medium. 

i. Ideal fluid. For t > 0 let 
city dk = 1 in an infinite ideal 
sufficiently long time, when the 

on the properties of the (unbounded) 

the body move (deform) with unit velo- 

fluid (uk = 0 for t < 0). After a 
flow has been established, the com- 

pressibility of the fluid will not yet have affected the velocity field 
in a sufficiently large neighborhood of the body, and the momentum of 
the fluid will be characterized by the additional masses “ik. The motion 
of the liquid is caused by the forces Fik with Gk = 1, hence we have 

lim 
s 

F,, (t) dz= mik (9) 
t-NC0 . 

0 

Thus, in the case of an ideal fluid the functions Fik are integrable 
and application of formula (8) gives 

iu 

lim Fik+ (P) = 
s 

Fik (z) do = mik ($0) 
P+O 

0 

2. Real fluid. Uniform motion in a real fluid will be opposed by 
friction forces aik, hence we have 

lim F, (t) = aik (11) 
t-%x 

One may assert that aii > 0. Moreover, it is clear that the friction 
forces aik are bounded. 

In accordance with formula (8) 

lim pF$ = aik (12) 
P-+0 

3. Solid elastic medium. From the relations 

Qi;: = pFi; pu; = (I$,)+ (&J+ (13) 

it is clear that kik is the generalized force corresponding to a Unit 
displacement uK = 1 for t > 1 (uk = 0 for t < 0). 
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For a solid elastic medium the limit of this force Pik (as t e m) 
differs from zero at least for k = i. In this case pii > 0. Moreover, 
it is clear that all the coefficients of rigidity Bik are bounded. 

Application of formula (8) to Pi, gives the following relation: 

lim p2Fii = Pik 
P+a 

(14) 

Now it is possible to consider the limiting 
which follow from system (7) and determine the 
the body. 

relations (as p - 0) 

final displacements of 

If all terms of equation (7) are multiplied 
1 according to the cases considered above, and 
zero, the limiting relations will have the form 

by pqe where 7 = -1, 0, 
p is made to approach 

a) 

b) 

C) 

mik Uka, + I”ii t”*& - u’ ,cd] +[;mikuka?]= (15) 
k=l k=7 

= 2 M,; unL i- i mik uirn + [x M,S, (ut, - %&I ] + [ i mik ukem] 

71 k=l k=7 

i %kUkoo + [ f$ %k”kw]_ %k”&+ [f$ ‘ik’kz] (W 

k=l k=7 k=L k=7 

i Pik”k,+[i Pik’lkm]= E PikUim+[5 Pik”[m] 

k=l k=7 k=l k=7 

(17) 

The terms in the square brackets rorrespond to the residual deforma- 
tions of the body (on the left-hand side of the equation) and of the 
fictitiow body (on the right). 

Examination of these relations leads to the following conclusions: 

1) Elastic deformations do not affect the final displacements. 

Actually, all of the coefficients M. rig mik* ai& and pi& are bounded, 
while the residual deformations vanish, hence the 
to them also vanish. 

2) In the case where the functions Fii are not 
fluid or a solid elastic medium), the mass of the 
tions within the body have no effect on the final 
surface. 

This result is a consequence of equations (16) 

the generalized masses of the body do not appear. 

terms corresponding 

integrable (a real 
body and the deforma- 
displacements of its 

and (17). in which 
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3) If the deformations of both bodies are elastic, and their corre- 
sponding principal central axes and masses (moments of inertia) are the 
same, the final displacements of the body are equal to the final dis- 
placements of the fictitious body (or medium without a body). 

The deformations of the fictitious body will be elastic, for example, 
in the case of a plane wave, where all particles in the medium are dis- 
placed by the same amount. 

4) As follows from (16) and (17). the final displacements of the sur- 
face of the body in a real fluid or in an elastic solid are the same as 
the final displacements of the surface of the fictitious body, provided 
that the deformations of the surfaces of both bodies (uk and uko for 
k = 7. 8, . ..) are elastic. 

We now turn our attention to the principal difference of systems (16) 
and (17) from system (15). Terms containing the generalized masses of 
the body are absent from the former (a fact which enabled Conclusions 2 
and 4 to be drawn) . This difference depends on the physical nature of 
the equations. 

Equations (17) are equations for the generalized force (at t = 00). 
The right-hand sides of the equations represent forces acting on the un- 
displaced body owing to the displacements of the medium, while the left- 
hand sides are necessary for the displacements of the body in an undis- 
turbed medium. The equality of these forces is evident if one considers 
that the first state may be obtained by a displacement of the body from 
the final to the initial position. 

It is also clear that the mass of the body will have no effect what- 
soever on those forces arising from the elasticity of the medium. 

The similar situation in the case of a real fluid is less clear. 
Equations (16) are equalities between integrals of the generalized 
forces with respect to time - they are equalities between the final 
values of the impulses 

c Qik (t) df 
.I 
0 

In the case of a real fluid the impulses necessary for the displace- 
ment of the body (the left-hand sides of the equations) or for the pre- 
vention of it (right-hand side) are finite and non-zero. The Impulse of 
the inertia force of the body necessary for its displacement from one 
state of rest into another is equal to zero. Hence, the generalized 
masses of the body do not have an effect on its final displacement and 
do not appear in system (16). The same is true of the additional mass. 
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In this sense a real fluid is closer to an elastic 
ideal fluid. 

1409 

solid than to an 

In the case of an ideal fluid the final impulse equals zero. Equa- 
tions (15) are equalities of the integrals of the impulses 

cat 

11 Qik (T) hit 
Ob 

For the inertia forces of the body and the fluid (the added mass), 
these quantities are finite and non-zero. As a result, the generalized 
masses of the body and the added mass appear in system (15) and influ- 
ence the final displacements of the body. 

Let an elastic body possess such symmetry that under the action of a 
plane wave in an ideal fluid all of its generalized displacements except 
one are zero. In this case, from equation (15). follows the formula of 
Novozhilov [ll 

urn = 
MO-/-m 

M+m uzoo (18) 

which is seen to be valid for an elastic body as well. 

From formula (18) it is clear that the final displacement of the 
elastic body under the action of a plane wave in an ideal fluid depends 
on its buoyancy. 

For positive buoyancy (M < M”), it is greater than the displacement 
of a particle of the fluid, while for negative buoyancy (M > MO) it is 
less. 

On the other hand, as shown above, the displacement of a body under 
the same conditions but in a real fluid does not depend on its mass and 
always equals the displacement of a particle of the fluid. 

In this connection one may raise a question regarding the applica- 
bility of formula (18) for real conditions. The answer to this question 
is the following. 

In an ideal fluid let the body at time T attain a displacement 
sufficiently close to the final displacement, so that subsequently it 
does not depart from a negligibly small neighborhood of the final state. 

If the viscosity of a real fluid is sufficiently small or the dimen- 
sions of the body are sufficiently large that the inertia forces aris- 
ing in the displacement of the body during the time 0 < t < T predominate 
over the friction forces, then formula (18) is applicable. It gives the 
value of the final displacement in that interval during which the inertia 



1410 L.I. Slepian 

forces predominate. However, as t - 0~ the displacement of the body in a 
real fluid approaches the displacement of a fluid particle independently 
of its buoyancy. Hence, during the remaining time (t > T), a body of 
positive buoyancy which is displaced more than the fluid, returns 
(although slowly for small friction) so that its displacement becomes 
equal to the displacement of a fluid particle. 

These statements may be illustrated by the following example. Let an 
absolutely rigid body of mass M be displaced in a real incompressible 
(for simplicity) fluid in one direction, where the functions defining 
the displacement of the medium and the interaction of the body with the 
medium have the forms 

F = m8, (t) -t_ a, l4 . a = ;O = 8, (t) - 8, (t - 1) 
* 

6, (2) = 0 for 2 < 0, 80(z) = 1 for 2 > 0 

a 

& (4 = 61 (4, s 6, (2) dz = 1 for a > 0, 6, (z)=O for 2 # 0 

0 

Here s is the added mass and a is the coefficient of friction. The 
final displacement of a fluid particle is 

ZI G r= 1 (~0 (t) = 242 = I for t > 1) 

The given information enables one to obtain the following equation 
of motion of the body from system (6): 

(M + m) ii 4 0; = (MO -j- m)[& (t) - 6, 0 - 111 + 0. &I 0) - 60 (t - 111 (19) 

The solution of this equation is (for t > 0) 

&- My-m [I - ,--vt - (1 - e-v(t--l)) 6, (t - I)] + t y-- 5 (I - ,_““) - 

- 

[ 
t - 1 - .+ (1 - e-” (t-1)) 1 6, (t - 1) ( cl 

Y=I- 

M+m 1 
This dependence may be represented by the series (for t al) 

M”fm M-MM” Co 

uz7iQX+ M+m 
2 (_ l)n+l Vn tn+ - (t - v+l 

(n + 1Y 
(21) 

n=l 

It is clear that for VT << 1, where T may be large for sufficiently 
small friction, the displacement of the body during the time interval 
16 t < 7’ is determined by the first term of expression (Zl), that is, 
formula (18). 
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However, for subsequent increases in time t, as is clear from equa- 
tion (21). the displacement II of the body decreases if M < p and in- 
creases if M > fl, and, as follows from the expression (20) 
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